Social Icons

Selasa, 11 Juni 2013

The Golden Number of Humans


Angka FIBONACCI ? apa sebenarnya angka fibonacci tersebut?
Nah kali ini kita akan membahas tentang angka misteri tersebut, konon katanya angka fibonacci adalah angka paling cantik didunia, (ingat cantik bukan milik wanita Aja ,hahahahaha). Angka fibonacci memiliki banyak kaitan tentang bukti adanya tuhan karena itu angka ini sering  juga disebut sebagai “Angka Tuhan”. Angka ini sejatinya telah banyak diteliti oleh peneliti luar negeri, mereka umumnya menyebut angka ini adalah "golden ratio" atau "golden number". Ya, bagi teman-teman semua yang sudah mempelajari tentang angka ini pasti teman-teman semuanya mengetahui bahwa hal ini sangat berkaitan dengan deret Fibonacci Atau Fibonacci Sequence.

            Angka Fibonacci adalah deretan angka yang mana deretan tersebut disusun dan diperkenalkan oleh Leonardo Fibonacci pada tahun 1175-1245 M. Pada saat itu angka misteri ini disebut juga sebagai The Golden Number Of Human Life (keren juga ya julukan bagi angka misteri ini). Percaya atau tidak, menurut kepercayaan para ilmuwan di zaman dahulu kala, angka Fibonacci adalah salah satu bukti adanya Tuhan (seperti yang saya sampaikan tadi). Wah kok bisa? Hampir semua ciptaan Tuhan dianggap mempunyai angka Fibonacci dalam hidupnya, baik itu tumbuhan, hewan, maupun manusia karena hal itulah mengapa angka ini dijuluki sebagai “Angka Tuhan”.

Apa sih sebenarnya bilangan Fibonacci itu? Bilangan Fibonacci adalah urutan angka yang diperoleh dari penjumlahan dua angka didepannya, misalnya seperti ini : 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946 dst.

Dalam matematikabilangan Fibonacci adalah barisan yang didefinisikan secara rekursif sebagai berikut:
Penjelasan: barisan ini berawal dari 0 dan 1, kemudian angka berikutnya didapat dengan cara menambahkan kedua bilangan yang berurutan sebelumnya. Dengan aturan ini, maka barisan bilangan Fibonaccci yang pertama adalah:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946...
Barisan bilangan Fibonacci dapat dinyatakan sebagai berikut:
Fn = (x1n – x2n)/ sqrt(5)
dengan
·         Fn adalah bilangan Fibonacci ke-n
·         x1 dan x2 adalah penyelesaian persamaan x2 – x – 1 = 0.
Perbandingan antara Fn+1 dengan Fn hampir selalu sama untuk sebarang nilai n dan mulai nilai n tertentu, perbandingan ini nilainya tetap. Perbandingan itu disebut Golden Ratio yang nilainya mendekati 1,618

Penjelasan : Misal Angka 34, diperoleh dari penjumlahan 2 angka didepannya yaitu 13+21.
Mungkin Anda kemudian bertanya, lalu apa kaitannya angka2 itu dengan bukti adanya Tuhan?
Bilangan Fibonacci ini menunjukkan beberapa fakta aneh, tetapi sebelumnya kita perlu mengetahui terlebih dahulu mengenai angka Phi? Apa itu angka Phi?
Pasti Anda tahu, angka Phi adalah angka 1.618. Apa hubungannya dengan fibonacci? Phi merupakan hasil pembagian angka dalam deret Fibonacci dengan angka didepannya.
Misalnya 3:2, 34:21, 89:55.
Semakin besar angka Fibonacci yang dilibatkan dalam pembagian, hasilnya akan semakin mendekati 1.618.
Berikut beberapa fakta yang ditemukan di alam ini:

1. Jumlah Daun pada Bunga (petals)
Mungkin sebagian besar tidak terlalu memperhatikan jumlah daun pada sebuah bunga. Dan bila diamati, ternyata jumlah daun pada bunga itu menganut deret fibonacci. contohnya:
- jumlah daun bunga 3 : bunga lili, iris
- jumlah daun bunga 5 : buttercup (sejenis bunga mangkok)
- jumlah daun bunga 13 : ragwort, corn marigold, cineraria,
- jumlah daun bunga 21 : aster, black-eyed susan, chicory
- jumlah daun bunga 34 : plantain, pyrethrum
- jumlah daun bunga 55,89 : michaelmas daisies, the asteraceae family

Ingin liat buktinya? silahkan diamati beberapa gambar berikut



2. Pola Bunga
Pola bunga juga menunjukkan adanya pola fibonacci ini, misalnya pada bunga matahari
Dari titik tengah menuju ke lingkaran yang lebih luar, polanya mengikuti deret fibonacci

3. Tubuh Manusia
- Tangan


Bila Anda ukur panjang jari Anda, kemudian Anda bandingkan dengan panjang lekuk jari, maka akan ketemu 1.618.

penjelasan :
- Coba bagi tinggi badan Anda dengan jarak pusar ke telapak kaki, maka hasilnya adalah 1.618.
- Bandingkan panjang dari pundak ke ujung jari dengan panjang siku ke ujung jari, maka hasilnya adalah 1.618.
- Bandingkan panjang dari pinggang ke kaki dengan panjang lutut ke kaki, maka hasilnya adalah 1.618
- Semua perbandingan ukuran tubuh manusia adalah 1.618. benarkah? silahkan membuktikannya.

Fakta-Fakta Lain
1. jumlah lebah betina pasti lebih banyak dari jantan bukan? Kalau dibandingkan antara jumlah lebah betina dengan jumlah lebah jantan, maka hasilnya adalah 1.618



2. Kerang laut, kerang laut memiliki cangkang keras yang berbentuk spiral. kalau dibandingkan antara panjang garis spiral paling depan dengan berikutnya, maka hasilnya adalah 1.618

3. Daun, tangkai, serangga, dan semua yang berbentuk spiral, bila dibandingkan antara panjang spiral terakhir dengan sebelumnya, maka hasilnya akan selalu 1.618.

4. Kabarnya, Stradivarius, pencipta bola, juga menggunakan angka ini dalam peletakan lubang di bola.

5. Parthenon

Bangunan yang diarsiteki oleh Phidias ini juga menggunakan perbandingan yang berdasarkan angka Phi. 1.618.

6. Perkembangbiakan sepasang kelinci
Menurut, sebuah penelitian yang dilakukan, sepasang Kelinci berkembang biak dengan pola deret angka Fibonacci ini.

Kemenangan Obama dan deret Angka Fibonacci
Topik ini hanyalah sebuah tambahan saja. Ada sebuah penelitian yang dipublikasikan pada bulan Juni 2008, pada saat itu masih dalam tahap kampanye calon Presiden Obama dan MacCain, yang mana penelitian tersebut mengemukakan dan tepatnya mungkin meramalkan bahwa Obama akan menjadi Presiden Amerika yang ke-44.

Penelitian ini didasarkan pada kejadian-kejadian politik di Amerika yang ada kaitannya dengan kehidupan politik orang kulit hitam di Amerika (African-Americans). Pada penelitian itu disebutkan bahwa berdasarkan deret tahun kejadian politik di Amerika, maka Obama memiliki peluang yang besar untuk menjadi Presiden Amerika.
Nah, ternyata kenyataannya itu terbukti.

Wah, keren juga ya pembahasan kali ini. Semoga sedikit artikel yang saya buat dengan menggabungkan 2 sumber ini dapat bermanfaat bagi semua pembaca.AAMINN!!!







readmore...

Kamis, 06 Juni 2013

THERMOKIMIA

Thermokimia adalah bagian dari ilmu kimia yang mempelajari reaksi kimia berserta energi yang dihasilkan atau yang diperlukan untuk berlangsungnya reaksi. Berdasarkan hal maka dapat dibedakan atas :

1. Reaksi Eksoterm

Pada reaksi eksoterm terjadi perpindahan kalor dari sistem ke lingkungan atau pada reaksi tersebut dikeluarkan panas.Pada reaksi eksoterm harga dH = ( - )
Contoh : C(s) + O2(g) à--> CO2(g) + 393.5 kJ ; dH = -393.5 kJ

2. Reaksi Endoterm

Pada reaksi endoterm terjadi perpindahan kalor dari lingkungan ke sistem atau pada reaksi tersebut dibutuhkan panas.Pada reaksi endoterm harga dH = ( + )
Contoh : CaCO3(s) à CaO(s) + CO2(g) -->178.5 kJ ; dH = +178.5 kJ

ENTALPHI SISTEM .

Entalpi = H = Kalor reaksi pada tekanan tetap = Qp
Perubahan entalpi adalah perubahan energi yang menyertai peristiwa perubahan kimia pada tekanan tetap.
a.Pemutusan ikatan membutuhkan energi (= endoterm)
Contoh: H2 -->2H-->kJ ; dH= +akJ
b. Pembentukan ikatan memberikan energi (= eksoterm)
Contoh: 2H--> H2--> kJ ; dH = -a kJ

Istilah yang digunakan pada perubahan entalpi :
1.Entalpi Pembentakan Standar ( dHf )

:dH untuk membentuk 1 mol persenyawaan langsung dari unsur-unsurnya yang diukur pada 298 K dan tekanan 1 atm

Contoh: H2(g) + 1/2 O2(g) à H20 (l) ; dHf = -285.85 kJ

2.Entalpi Penguraian

:dH dari penguraian 1 mol persenyawaan langsung menjadi unsur-unsurnya (= Kebalikan dari
dH pembentukan).

Contoh: H2O (l) -->H2(g) + 1/2 O2(g) ; dH = +285.85 kJ

3.Entalpi Pembakaran Standar ( dHc )

:dH untuk membakar 1 mol persenyawaan dengan O2 dari udara yang diukur pada 298 K dan tekanan 1 atm.
Contoh: CH4(g) + 2O2(g) -->CO2(g) + 2H2O(l) ; dHc = -802 kJ

4.Entalpi Reaksi

:dH dari suatu persamaan reaksi di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan koefisien-koefisien persamaan reaksi bulat sederhana.
Contoh: 2Al + 3H2SO4 -->Al2(SO4)3 + 3H2 ; dH = -1468 kJ

5.Entalpi Netralisasi

:dH yang dihasilkan (selalu eksoterm) pada reaksi penetralan asam atau basa.
Contoh: NaOH(aq) + HCl(aq) --> NaCl(aq) + H2O(l) ; dH = -890.4 kJ/mol

6.Hukum Lavoisier-Laplace"Jumlah kalor yang dilepaskan pada pembentukan 1 mol zat dari unsur-unsurya = jumlah kalor yang diperlukan untuk menguraikan zat tersebut menjadi unsur-unsur pembentuknya."Artinya : Apabila reaksi dibalik maka tanda kalor yang terbentuk juga dibalik dari positif menjadi negatif atau sebaliknya

Contoh:N2(g) + 3H2(g) -->2NH3(g) ; d H = - 112 kJ
2NH3(g) --> N2(g) + 3H2(g) ; dH = + 112 kJ

PENENTUAN PERUBAHAN ENTALPI

Untuk menentukan perubahan entalpi pada suatu reaksi kimia biasanya digunakan alat seperti kalorimeter, termometer dan sebagainya yang mungkin lebih sensitif.
Perhitungan : dH reaksi = Σ dHfo produk - Σ dHfo reaktan

HUKUM HESS
"Jumlah panas yang dibutuhkan atau dilepaskan pada suatu reaksi kimia tidak tergantung pada jalannya reaksi tetapi ditentukan oleh keadaan awal dan akhir."

Contoh:
C(s) + O2(g) --> CO2(g) ; dH = x kJ --> 1 tahap
C(s) + 1/2 02(g) --> CO(g) ; dH = y kJ --> 2 tahap
CO(g) + 1/2 O2(g) --> CO2(g) ; dH = z kJ
------------------------------------------------------------ +
C(s) + O2(g) --> CO2(g) ; dH = y + z kJ



Menurut Hukum Hess : x = y + z

Hukum Hess
Hukum Hess adalah sebuah
hukum dalam kimia fisik untuk ekspansi Hess dalam siklus Hess. Hukum ini digunakan untuk memprediksi perubahan entalpi dari hukum kekekalan energi (dinyatakan sebagai fungsi keadaan ΔH).

Menurut hukum Hess, karena
entalpi adalah fungsi keadaan, perubahan entalpi dari suatu reaksi kimia adalah sama, walaupun langkah-langkah yang digunakan untuk memperoleh produk berbeda. Dengan kata lain, hanya keadaan awal dan akhir yang berpengaruh terhadap perubahan entalpi, bukan langkah-langkah yang dilakukan untuk mencapainya.
Hal ini menyebabkan perubahan entalpi suatu reaksi dapat dihitung sekalipun tidak dapat diukur secara langsung. Caranya adalah dengan melakukan
operasi aritmatika pada beberapa persamaan reaksi yang perubahan entalpinya diketahui. Persamaan-persamaan reaksi tersebut diatur sedemikian rupa sehingga penjumlahan semua persamaan akan menghasilkan reaksi yang kita inginkan. Jika suatu persamaan reaksi dikalikan (atau dibagi) dengan suatu angka, perubahan entalpinya harus dikali (dibagi) pula. Jika persamaan itu dibalik, maka tanda perubahan entalpi harus dibalik pula (yaitu menjadi -ΔH).
Selain itu, dengan menggunakan hukum Hess, nilai ΔH juga dapat diketahui dengan pengurangan
entalpi pembentukan produk-produk dikurangi entalpi pembentukan reaktan. Secara matematis
∆H0 = Σ (∆H0f produk ) - Σ (∆H0f reaktan )
.
Untuk reaksi-reaksi lainnya secara umum
∆H0 = Σ (∆H0 produk ) - Σ (∆H0 reaktan )
.
Kegunaan

Hukum Hess menyatakan bahwa perubahan entalpi keseluruhan dari suatu proses hanya tergantung pada keadaan awal dan akhir reaksi, dan tidak tergantung kepada rute atau langkah-langkah diantaranya. Dengan mengetahui ΔHf (perubahan entalpi pembentukan) dari reaktan dan produknya, dapat diramalkan perubahan entalpi reaksi apapun, dengan rumus
ΔH=ΔHfP-ΔH fR
Perubahan entalpi suatu reaksi juga dapat diramalkan dari perubahan entalpi
pembakaran reaktan dan produk, dengan rumus
ΔH=-ΔHcP+ΔHcR

Contoh tabel yang digunakan untuk menerapkan hukum Hess

ΔHf zat
CH4 (g) : -75 kJ/mol ; O2 (g) : 0 kJ/mol ; CO2 (g) : -394 kJ/mol: H2O (l) =-286kJ/mol
Dengan menggunakan data entalpi pembentukan diatas dapat diketahui perubahan entalpi untuk reaksi-reaksi dibawah ini:
CH4(g)+2O2(g) → CO2(g) + 2H2O(l)
ΔHc--> +-75+0=-394+2x-286
ΔHc -75=-966
ΔHc =-891KJ.mol-1
Contoh lainnya
Jika diketahui:
B2O3(s) + 3H2O(g) → 3O2(g) + B2H6(g) ΔH = +2035 kJ
H2O(l) → H2O(g) ΔH = +44 kJ
H2(g) + (1/2)O2(g) → H2O(l) ΔH = -286 kJ
2B(s) + 3H*2B(s) + (3/2)O2(g) → B2O3(s)

Persamaan-persamaan reaksi diatas (berikut perubahan entalpinya) dikalikan dan/atau dibalik sedemikian rupa:
B2H6(g) + 3O2(g) → B2O3(s) + 3H2O(g) ΔH = -2035 kJ
3H2O(g) → 3H2O(l) ΔH = -132 kJ
3H2O(l) → 3H2(g) + (3/2)O2(g) ΔH = +858 kJ
2B(s) + 3H2(g) → B2H6(g) ΔH = +36 kJ
Sehingga penjumlahan persamaan-persamaan diatas akan menghasilkan
2B(s) + (3/2)O2(g) → B2O3(s) ΔH = -1273 kJ

Konsep dari hukum Hess juga dapat diperluas untuk menghitung perubahan fungsi keadaan lainnya, seperti
entropi dan energi bebas. Kedua aplikasi ini amat berguna karena besaran-besaran tersebut sulit atau tidak bisa diukur secara langsung, sehingga perhitungan dengan hukum Hess digunakan sebagai salah satu cara menentukannya.
Untuk perubahan entropi:

ΔSo = Σ(ΔSfoproduk) - Σ(ΔSforeaktan)
ΔS = Σ(ΔSoproduk) - Σ(ΔSoreaktan).

Untuk perubahan energi bebas:
ΔGo = Σ(ΔGfoproduk) - Σ(ΔGforeaktan)
ΔG = Σ(ΔGoproduk) - Σ(ΔGoreaktan).
Hukum kekekalan energi adalah salah satu dari
hukum-hukum kekekalan yang meliputi energi kinetik dan energi potensial. Hukum ini adalah hukum pertama dalam termodinamika.
Hukum Kekekalan Energi (Hukum I Termodinamika)berbunyi: "Energi dapat berubah dari stu bentuk ke bentuk yang lain tapi tidak bisa diciptakan ataupun dimusnahkan (konversi energi)".

ENERGI IKATAN
Reaksi kimia merupakan proses pemutusan dan pembentukan ikatan. Proses ini selalu disertai perubahan energi. Energi yang dibutuhkan untuk memutuskan ikatan kimia, sehingga membentuk radikal-radikal bebas disebut energi ikatan. Untuk molekul kompleks, energi yang dibutuhkan untuk memecah molekul itu sehingga membentuk atom-atom bebas disebut energi atomisasi.
Harga energi atomisasi ini merupakan jumlah energi ikatan atom-atom dalam molekul tersebut. Untuk molekul kovalen yang terdiri dari dua atom seperti H2, 02, N2 atau HI yang mempunyai satu ikatan maka energi atomisasi sama dengan energi ikatan Energi atomisasi suatu senyawa dapat ditentukan dengan cara pertolongan entalpi pembentukan senyawa tersebut. Secara matematis hal tersebut dapat dijabarkan dengan persamaan :
dH reaksi
= Σ energi pemutusan ikatan - Σ energi pembentukan ikatan
= Σ energi ikatan di kiri - Σ energi ikatan di kanan
Contoh:
Diketahui :
energi ikatan
C - H = 414,5 kJ/MolC = C = 612,4 kJ/molC - C = 346,9 kJ/molH - H = 436,8 kJ/mol
Ditanya:
dH reaksi = C2H4(g) + H2(g) --? C2H6(g)
dH reaksi
= Jumlah energi pemutusan ikatan - Jumlah energi pembentukan ikatan

= (4(C-H) + (C=C) + (H-H)) - (6(C-H) + (C-C)) = ((C=C) + (H-H)) - (2(C-H) + (C-C))
= (612.4 +436.8) - (2 x 414.5 + 346.9)= - 126,7 kJ.

readmore...

Kimia

Kimia (dari bahasa Arabكيمياء, transliterasi: kimiya = perubahan benda/zat atau bahasa Yunani: χημεία, transliterasi: khemeia) adalah ilmu yang mempelajari mengenai komposisi, struktur, dan sifat zat atau materi dari skala atom hingga molekul serta perubahan atau transformasi serta interaksi mereka untuk membentuk materi yang ditemukan sehari-hari. Kimia juga mempelajari pemahaman sifat dan interaksi atom individu dengan tujuan untuk menerapkan pengetahuan tersebut pada tingkat makroskopik. Menurut kimia modern, sifat fisik materi umumnya ditentukan oleh struktur pada tingkat atom yang pada gilirannya ditentukan oleh gaya antaratom dan ikatan kimia


      Kimia sering disebut sebagai "ilmu pusat" karena menghubungkan berbagai ilmu lain, seperti fisika, ilmu bahan, nanoteknologi, biologi, farmasi,kedokteran, bioinformatika, dan geologi . Koneksi ini timbul melalui berbagai subdisiplin yang memanfaatkan konsep-konsep dari berbagai disiplin ilmu. Sebagai contoh, kimia fisik melibatkan penerapan prinsip-prinsip fisika terhadap materi pada tingkat atom dan molekul.
      Kimia berhubungan dengan interaksi materi yang dapat melibatkan dua zat atau antara materi dan energi, terutama dalam hubungannya dengan hukum pertama termodinamika. Kimia tradisional melibatkan interaksi antara zat kimia dalam reaksi kimia, yang mengubah satu atau lebih zat menjadi satu atau lebih zat lain. Kadang reaksi ini digerakkan oleh pertimbangan entalpi, seperti ketika dua zat berentalpi tinggi seperti hidrogen dan oksigen elemental bereaksi membentuk air, zat dengan entalpi lebih rendah. Reaksi kimia dapat difasilitasi dengan suatu katalis, yang umumnya merupakan zat kimia lain yang terlibat dalam media reaksi tapi tidak dikonsumsi (contohnya adalah asam sulfat yang mengkatalisasi elektrolisis air) atau fenomena immaterial (seperti radiasi elektromagnet dalam reaksi fotokimia). Kimia tradisional juga menangani analisis zat kimia, baik di dalam maupun di luar suatu reaksi, seperti dalam spektroskopi.
     Semua materi normal terdiri dari atom atau komponen-komponen subatom yang membentuk atom; protonelektron, dan neutron. Atom dapat dikombinasikan untuk menghasilkan bentuk materi yang lebih kompleks seperti ionmolekul, atau kristal. Struktur dunia yang kita jalani sehari-hari dan sifat materi yang berinteraksi dengan kita ditentukan oleh sifat zat-zat kimia dan interaksi antar mereka. Baja lebih keras dari besi karena atom-atomnya terikat dalam struktur kristal yang lebih kaku. Kayu terbakar atau mengalami oksidasi cepat karena ia dapat bereaksi secara spontan denganoksigen pada suatu reaksi kimia jika berada di atas suatu suhu tertentu.
     Zat cenderung diklasifikasikan berdasarkan energi, fase, atau komposisi kimianya. Materi dapat digolongkan dalam 4 fase, urutan dari yang memiliki energi paling rendah adalah padatcairgas, dan plasma. Dari keempat jenis fase ini, fase plasma hanya dapat ditemui di luar angkasa yang berupabintang, karena kebutuhan energinya yang teramat besar. Zat padat memiliki struktur tetap pada suhu kamar yang dapat melawan gravitasi atau gaya lemah lain yang mencoba mengubahnya. Zat cair memiliki ikatan yang terbatas, tanpa struktur, dan akan mengalir bersama gravitasi. Gas tidak memiliki ikatan dan bertindak sebagai partikel bebas. Sementara itu, plasma hanya terdiri dari ion-ion yang bergerak bebas; pasokan energi yang berlebih mencegah ion-ion ini bersatu menjadi partikel unsur. Satu cara untuk membedakan ketiga fase pertama adalah dengan volume dan bentuknya: kasarnya, zat padat memeliki volume dan bentuk yang tetap, zat cair memiliki volume tetap tapi tanpa bentuk yang tetap, sedangkan gas tidak memiliki baik volume ataupun bentuk yang tetap.
Air yang dipanaskan akan berubah fasemenjadi uap air.
Air (H2O) berbentuk cairan dalam suhu kamar karena molekul-molekulnya terikat oleh gaya antarmolekulyang disebut ikatan Hidrogen. Di sisi lain, hidrogen sulfida (H2S) berbentuk gas pada suhu kamar dan tekanan standar, karena molekul-molekulnya terikat dengan interaksi dwikutub (dipole) yang lebih lemah. Ikatan hidrogen pada air memiliki cukup energi untuk mempertahankan molekul air untuk tidak terpisah satu sama lain, tapi tidak untuk mengalir, yang menjadikannya berwujud cairan dalam suhu antara 0 °C sampai 100 °C pada permukaan laut. Menurunkan suhu atau energi lebih lanjut mengizinkan organisasi bentuk yang lebih erat, menghasilkan suatu zat padat, dan melepaskan energi. Peningkatan energi akan mencairkan es walaupun suhu tidak akan berubah sampai semua es cair. Peningkatan suhu air pada gilirannya akan menyebabkannya mendidih (lihat panas penguapan) sewaktu terdapat cukup energi untuk mengatasi gaya tarik antarmolekul dan selanjutnya memungkinkan molekul untuk bergerak menjauhi satu sama lain.
       Ilmuwan yang mempelajari kimia sering disebut kimiawan. Sebagian besar kimiawan melakukan spesialisasi dalam satu atau lebih subdisiplin. Kimia yang diajarkan pada sekolah menengah sering disebut "kimia umum" dan ditujukan sebagai pengantar terhadap banyak konsep-konsep dasar dan untuk memberikan pelajar alat untuk melanjutkan ke subjek lanjutannya. Banyak konsep yang dipresentasikan pada tingkat ini sering dianggap tak lengkap dan tidak akurat secara teknis. Walaupun demikian, hal tersebut merupakan alat yang luar biasa. Kimiawan secara reguler menggunakan alat dan penjelasan yang sederhana dan elegan ini dalam karya mereka, karena terbukti mampu secara akurat membuat model reaktivitas kimia yang sangat bervariasi.
     Ilmu kimia secara sejarah merupakan pengembangan baru, tapi ilmu ini berakar pada alkimia yang telah dipraktikkan selama berabad-abad di seluruh dunia.

readmore...

PERSAMAAN LAJU REAKSI

 

FAKTOR-FAKTOR YANG MEMPENGARUHI LAJU REAKSI
Pengalaman menunjukan bahwa serpihan kayu terbakar lebih cepat daripada balok kayu, hal ini berarti bahwa laju reaksi yag sama dapat berlangsung dengan kelajuan yang berbeda, bergantung pada keadaan zat pereaksi. Dalam bagian ini akan dibahas faktor-faktor yang mempengaruhi laju reaksi. Pengetahuan tentang hal ini memungkinkan kita dapat mengendalikan laju reaksi, yaitu melambatkan reaksi yang merugikan dan menambah laju reaksi yang menguntungkan.

1.  Konsentrasi Pereaksi

Konsentrasi memiliki peranan yang sangat penting dalam laju reaksi, sebab semakin besarkonsentrasi pereaksi, maka tumbukan yang terjadi semakin banyak, sehingga menyebabkan laju reaksi semakin cepat. Begitu juga, apabila semakin kecil konsentrasi pereaksi, maka semakin kecil tumbukan yang terjadi antar partikel, sehingga laju reaksi pun semakin kecil.
2.  Suhu

Suhu juga turut berperan dalam mempengaruhi laju reaksi. Apabila suhu pada suatu rekasi yang berlangusng dinaikkan, maka menyebabkan partikel semakin aktif bergerak, sehingga tumbukan yang terjadi semakin sering, menyebabkan laju reaksi semakin besar. Sebaliknya, apabila suhu diturunkan, maka partikel semakin tak aktif, sehingga laju reaksi semakin kecil.


3. Tekanan
Banyak reaksi yang melibatkan pereaksi dalam wujud gas. Kelajuan dari pereaksi seperti itu juga dipengaruhi tekanan. Penambahan tekanan dengan memperkecil volume akan memperbesar konsentrasi, dengan demikian dapat memperbesar laju reaksi.
4. Katalis
Katalis adalah suatu zat yang mempercepat laju reaksi kimia pada suhu tertentu, tanpa mengalami perubahan atau terpakai oleh reaksi itu sendiri. Suatu katalis berperan dalam reaksi tapi bukan sebagai pereaksi ataupun produk. Katalis memungkinkan reaksi berlangsung lebih cepat atau memungkinkan reaksi pada suhu lebih rendah akibat perubahan yang dipicunya terhadap pereaksi. Katalis menyediakan suatu jalur pilihan dengan energi aktivasi yang lebih rendah. Katalis mengurangi energi yang dibutuhkan untuk berlangsungnya reaksi.
5. Luas Permukaan Sentuh
Luas permukaan sentuh memiliki peranan yang sangat penting dalam laju reaksi, sebab semakin besar luas permukaan bidang sentuh antar partikel, maka tumbukan yang terjadi semakin banyak, sehingga menyebabkan laju reaksi semakin cepat. Begitu juga, apabila semakin kecil luas permukaan bidang sentuh, maka semakin kecil tumbukan yang terjadi antar partikel, sehingga laju reaksi pun semakin kecil. Karakteristik kepingan yang direaksikan juga turut berpengaruh, yaitu semakin halus kepingan itu, maka semakin cepat waktu yang dibutuhkan untuk bereaksi; sedangkan semakin kasar kepingan itu, maka semakin lama waktu yang dibutuhkan untuk bereaksi.

readmore...